Moondust Could Cloud Our Lunar Ambitions

On his final moonwalk in 1972, Jack Schmitt stands beside a split boulder near the Apollo 17 landing site. - NASA

Moondust Could Cloud Our Lunar Ambitions: It’s superfine. It’s sharp. It sticks to everything. Before we return to the moon, we’ll have to conquer one of the weirdest substances in the solar system.”
Print Version Title: “True Grit”
WIRED, May 20, 2019
Science
By Ceridwen Dovey

“Years after John Young commanded Apollo 16, he still believed that “dust is the number one concern in returning to the moon.””

 

In the public imagination, the American astronauts who landed on the moon five decades ago were square-jawed superhumans, not the types to worry about something as banal as housekeeping. But they did, obsessively. Each time they got back to the Apollo Lunar Module after a moonwalk, they were shocked at how much dust they’d tracked in and how hard it was to banish. This was no earthly grime; it was preternaturally sticky and abrasive, scratching the visors on the astronauts’ helmets, weakening the seals on their pressure suits, irritating their eyes, and giving some of them sinus trouble. “It just sort of inhabits every nook and cranny in the spacecraft and every pore in your skin,” Apollo 17’s Gene Cernan said during his post-mission debriefing.

 

Over the course of six moon landings, the so-called Dusty Dozen fought valiantly with their foe. They stomped their boots outside, then cinched garbage bags around their legs to stop the dust from spreading. They attacked it with wet rags, bristle brushes, and a low-suction vacuum cleaner, which Pete Conrad of Apollo 12 called “a complete farce.” (He finally stripped naked and stuffed his blackened suit into a pouch.) Cernan, upon returning from his last moonwalk, vowed, “I ain’t going to do much more dusting after I leave here. Ever.” In the end, NASA couldn’t find a foolproof solution. Years after John Young commanded Apollo 16, he still believed that “dust is the number one concern in returning to the moon.”

 

Now, with national space agencies and private corporations poised to do just that, the Apollo dust diaries are relevant once more. In January, China landed its Chang’e-4 probe on the far side of the moon, the latest step toward its stated aim of building a lunar research station. Two months later, the Japanese Aerospace Exploration Agency said it was partnering with Toyota to design a six-wheeled moon rover by 2029. Around the same time, Vice President Mike Pence announced plans to put American boots on the moon by 2024. According to NASA administrator Jim Bridenstine, the goal is “to go sustainably. To stay. With landers and robots and rovers—and humans.” India and Russia have missions planned too. Then there are the private ventures like Moon Express, whose Harvest Moon expedition will prospect for water, minerals, and other resources to mine. All of which raises a crucial question: What to do about that troublesome dust? An Australian physicist named Brian O’Brien may have the answer.

 

O’Brien became Earth’s foremost authority on moondust almost by accident. In 1964, five years before Apollo 11 touched down in the Sea of Tranquility, he was a skinny, precocious young professor of space science at Rice University in Houston, specializing in the study of radiation. This was during the early phase of Apollo training, when the astronauts were taking crash courses in all manner of subjects—vector calculus, antenna theory, the physiology of the human nose. O’Brien’s task was to teach them about the Van Allen belts, two regions of intense radiation that encircle the planet like a pair of inflatable pool tubes. He remembers the Apollo class of 1964, which included Gene Cernan and Buzz Aldrin, as the most “disciplined and alert” cohort of students he ever had.

 

In the lead-up to the Apollo 11 launch, O’Brien persuaded NASA to include a little something extra in the payload. It was a small box, about the size of a thick bar of soap, whose main function was to measure the accumulation of dust on the moon’s surface. O’Brien describes it as “a hitchhiking, delightfully minimalist” device. He sketched it on the back of his drinks coaster on a flight from Los Angeles to Houston, and refined the design on a cocktail napkin. Named the Dust Detector Experiment, or DDE, it was perhaps the least impressive component of the Apollo 11 science package; NASA didn’t even bother to mention it in press releases. But it worked well enough that the agency included modified versions of the original DDE on all subsequent Apollo flights. Four of them are still up there, and to this day they hold the record for longest continually operating experiments on the moon.

For many years, the data that the early DDEs sent back to Earth was thought to be missing or lost. Since its surprise rediscovery in 2006, those in the inner circle of outer space activities have slowly begun to realize that O’Brien’s unassuming detectors have a lot more to tell us about moondust than anyone could have imagined—except, of course, for O’Brien himself. Now 85, still sprightly and living in Perth, he’s been waiting half a century for the chance to share with the world what he knows about one of the solar system’s most baffling substances.

Read the Full Article »

About the Author:

Ceridwen Dovey is a writer based in Sydney. She is the author of the books Blood Kin, Only the Animals, In the Garden of the Fugitives, and On J. M. Coetzee: Writers on Writers.